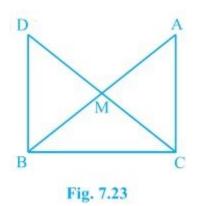
VIDYA BHAWAN BALIKA VIDYA PITH शक्तिउत्थानआश्रमलखीसरायबिहार


Class 09. Sub-.Maths

Date 19.08..2021

Teacher Name – Krishna Kanhaiya

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:

- (i) $\triangle AMC \triangle BMD$
- (ii) DBC is a right angle.
- (iii) $\triangle DBC \triangle ACB$
- (iv) CM = ½ AB

Solution:

It is given that M is the mid-point of the line segment AB, C = 90°, and DM = CM

(i) Consider the triangles \triangle AMC and \triangle BMD:

AM = BM (Since M is the mid-point)

CM = DM (Given in the question)

CMA = DMB (They are vertically opposite angles)

So, by **SAS congruency criterion**, $\triangle AMC \triangle BMD$.

(ii) ACM = BDM (by CPCT)

: AC BD as alternate interior angles are equal.

```
Now, ACB +DBC = 180° (Since they are co-interiors angles)
```

```
\Rightarrow 90° +B = 180°
```

∴ DBC = 90°

(iii) In \triangle DBC and \triangle ACB,

BC = CB (Common side)

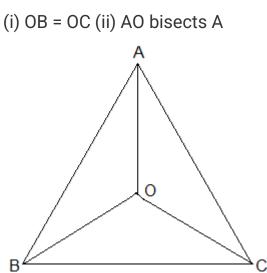
ACB = DBC (They are right angles)

DB = AC (by CPCT)

So, $\triangle DBC \triangle ACB$ by **SAS congruency**.

(iv) DC = AB (Since \triangle DBC \triangle ACB)

 \Rightarrow DM = CM = AM = BM (Since M the is mid-point)


So, DM + CM = BM+AM

Hence, CM + CM = AB

 \Rightarrow CM = ($\frac{1}{2}$) AB

Exercise: 7.2 (Page No: 123)

1. In an isosceles triangle ABC, with AB = AC, the bisectors of B and C intersect each other at O. Join A to O. Show that:

Solution:

Given:

AB = AC and

the bisectors of B and C intersect each other at O

(i) Since ABC is an isosceles with AB = AC,

B = C

½ B = ½ C

 \Rightarrow OBC = OCB (Angle bisectors)

 \therefore OB = OC (Side opposite to the equal angles are equal.)

(ii) In $\triangle AOB$ and $\triangle AOC$,

AB = AC (Given in the question)

AO = AO (Common arm)

OB = OC (As Proved Already)

So, $\triangle AOB \ \triangle AOC$ by SSS congruence condition.

BAO = CAO (by CPCT)

Thus, AO bisects A.

2. In \triangle ABC, AD is the perpendicular bisector of BC (see Fig. 7.30). Show that \triangle ABC is an isosceles triangle in which AB = AC.

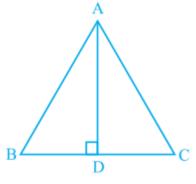


Fig. 7.30

Solution:

It is given that AD is the perpendicular bisector of BC

To prove:

AB = AC

Proof:

In $\triangle ADB$ and $\triangle ADC$,

AD = AD (It is the Common arm)

ADB = ADC

BD = CD (Since AD is the perpendicular bisector)

So, $\triangle ADB \triangle ADC$ by **SAS congruency criterion**.

Thus,

AB = AC (by CPCT)